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F = distribution on [0,∞) 
F(x):=F((x,∞)) → right tail 
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Ignatov’s Theorem 

 As n → ∞,  Ln(F) ⇒ F*, dF*/dλ (x) = xp, 2
51 +

=p  

Ignatov’s Conjecture: 
 Let T(F) = FI . Then limn→∞Tn(F) = Exponential(λF). 
 
 False in general. 
We prove that it is true in some cases if we agree to add Dirac’s 
measure δ0 and the null measure δ∞ to the family of exponential 
distributions under the name Exp(∞) and Exp(0). 
Definitions. 



Hazard rate: ( )
( )

( ) ( )
( )xF

xfxexF F
F

dyy
x

=λ⇔=
∫λ−
0

 

m(t)= mF(t) = ∫ )( xdFe tx
  is the m.g.f. of F  

t*(F) = sup { t ⎜ m(t) < ∞} 
F is short tailed  ⇔ t*(F) = ∞ 
F is medium  ⇔ 0 < t*(F) < ∞ 
F is long tailed  ⇔ t*(F) = 0 
THEOREM A. Consider the operator T : Mac→ Mac defined by 
TF = FI. Suppose that the limit λF(∞) does exist. Then 
(i). λF(∞) =  t*(F); 
(ii). -     If F is medium tailed, then  TnF  ⇒ Exp(λF(∞)); 

- If F is short tailed, then  TnF  ⇒ δ0; 
- If F is long tailed, then TnF does not converge at 

all: the mass  of TnF vanishes at infinity:  (TnF)(x) 
→ 1 as n → ∞. 

 
THEOREM B. In the same conditions as in THEOREM A, 
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Alternative proof: Ivan (Cluj) 
 
 COUNTEREXAMPLE C. (PĂLTĂNEA). There exist medium sized 
distributions for which the limits in Theorems A and B do not exist. Their 



hazard rate has no Cesaro limit at infinity, meaning 

that
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Ideas of the proof of The. A,B: use properties of TF = FI 
 
Stochastic domination: F pst G ⇔ F ≤  G 
 
Hazard rate stochastic domination: F pHR G ⇔ λG ≤ λF 
IFR (DFR) distributions: λF increasing (decreasing) 
Monotonous operator: F pst G ⇒ TF ≤ TG 
HR-monotonous operator: F pHR G ⇒ TF ≤ TG 

Continuity properties. 
(i). The mapping TF = FI is not continuous in the weak topology.  
  
(ii) The mapping T is monotonously continuous in the sense that 

Fn ↑F or Fn ↓ F ⇒ T(Fn) ⇒ T(F) 
(iii). If T(F) = F then either F = δ0 or F = Exponential ⎟⎟
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Monotonicity properties. 

 (i). The mapping T is not monotonous, but it is HR-monotonous  
(ii). The mapping T is IFR and DFR preserving  
F ∈ IFR ⇒ FI ∈ IFR and F ∈ DFR ⇒ FI ∈ DFR 
(iii): F ∈ IFR ⇒ T(F) pHR F and  F ∈ DFR ⇒  F pHR T(F) 

  

COROLLARY 
(i). If F ∈ IFR then the sequence Fn = Tn(F) is HR-decreasing and 
if F ∈ DFR is HR-increasing.  
(ii). If  F ∈ IFR. Then Tn(F) has a limit, G. If F ∈ DFR then the 
sequence of non-increasing right continuous functions (Tn(F))n has 
a limit, too, G . If G(∞) = 0, then Tn(F) weakly converges to G.  



 
CONJECTURE.  
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We prove it if λF is periodic 

 
Theorem 1.   

If λ is periodic and has the period T > 0, then Fn ⇒ Exp(
T
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Corollary 2. 
 If F has a periodic hazard rate, then the sequence (
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PLAN OF THE PROOF  
 

Proposition 2.1. 
 Let λ:[0,∞) → [0,∞) be measurable having the period T > 0.  

Let Λ(x) = ( )∫ λ
x

yy
0

d and F(x) = e - Λ(x) . Then  

)()(
⎭
⎬
⎫

⎩
⎨
⎧=

⎥⎦
⎤

⎢⎣
⎡

T
xThqxF T

x

 with q = e - Λ(T) and h(t) = e -Λ(t)  

      
(2.1) 
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 Moreover, the hazard rate of FI is 
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Corollary 2.2. Let (Fn)n be the sequence given by the recurrence 

(1.3). Then  
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 The functions hn : [0,T) → ℜ+ have the properties 

hn(0) = 1, hn(T) = q, hn+1(x) =  
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Main result. 
 
Theorem. Let (E,E) measurable space and μ  finite measure on it.   
Let K:E×E → [a,∞) , a > 0 be a measurable bounded function and 

∫ μ=μ )()(),( ydyfyxKfK         
(3.4) 

Let also B be the mapping defined for bounded measurable functions as  
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where y ∈ E is fixed.  
Suppose that there exists a bounded measurable function h: E → (0,∞), m 
>0  and a positive constant c > 0 such that 

hhcK =μ         
(3.6) 



 Then the sequence (Bnf)n converges to  ( ) ( )
( )yh
xhxf =∞ . The limit does 

not depend on f. 
 

Proposition 3.4. Let F be a continuous distribution on [0,∞) and let 

p ≤ 1, q = 1 – p ≥ 0.  Let B be the mapping Bf(x)=  
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defined for measurable  bounded positive functions. Then Bnf(x) converges 
to to qF(x). As a particular case, if F = U(0,T) is the uniform distribution on 

[0,T], then the limit is T
x

q , with the convention that 00 =1. 
Moreover, if q < 1,  the convergence is uniform. 

 
 

Remark and open problem. Is it necessary that the probability F 
from Proposition 3.4 be continuous? We think that the operator Bnf always 
has a limit which depends only on F, not on the chosen f. The limit is not 
necessarily the exponential  qF(x).  The main problem is to decide if the 
operator B defined in Proposition 3.4 has a fixed point h, i.e. if there exists h 
such that Bh = h.  

 

 ANOTHER APPROACH TO THEOREM 3.3 AND ITS 
APPLICATION  

The kernel considered in Theorem  is a very particular case in the R-theory 
for irreducible kernels, theory  developed, in Nummelin. 
 Let h be the C-invariant function for Kμ and let m, M denote its lower 
(upper) bound. Note the following relations, direct consequence of the 
assumptions in Theorem 3.3: 

( ) ( ) ( ) E∈∈∀μ≥ μμ AExxKAaxK AA ,11  
  4.1    

and 
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   4.2 



 Relation (4.1) implies that Kμ is μ-irreducible, (i.e. μ(A) > 0 
⇒ Kμ1A(x) > 0  ∀ x ∈ E), aperiodic and the whole space is a small 
set. Also relation (4.2) implies that h is a small function.  
 We summarize below the properties of Kμ which are relevant 
in our context> 
 Proposition 4.1. 

(i) The convergence parameter R of the kernel Kμ is c. 
(ii) There exists a c-invariant measure π satisfying π(E) < ∞, 

i.e. the kernel is c – positive recurrent. 
(iii) The kernel Kμ is c – uniformly ergodic, i.e. 
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