On iterated integrated tail
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F = distribution on [0,00)
F(X):=F((x,00)) — right tail
o0
F (x)dx
] ECOdx.

The integrated tail

[E(y)dy L
Fi(x)=2 e FE,(x)=—TE(y)dy
[E(y)dy Hox

Compare to

y
Lorenz curve: L(F)(y)= (J)F “H(t)dt
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Ignatov’s Theorem
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Asn — o, L"(F) = F*, dF*/dL (x) =X, P =

Ignatov’s Conjecture:
Let T(F) =F, . Then lim,_,.,T"(F) = Exponential(Ag).

False in general.
We prove that it is true in some cases if we agree to add Dirac’s
measure oy and the null measure d., to the family of exponential
distributions under the name Exp(cc) and Exp(0).

Definitions.
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Hazard rate: E(

m(t)= mg(t) = Ietx dF (X) s the m.g.f. of F

t*(F) = sup { t| m(t) <o}

F is short tailed < t*(F) =«

Fis medium < 0<t*(F) <o

F is long tailed < t*(F) =0

THEOREM A. Consider the operator T : M,c— M, defined by

TF = F,. Suppose that the limit Ag(c0) does exist. Then

(i). Ae(o0)= t'(F);

(ii). - If Fis medium tailed, then T"F = Exp(Ag(0));
- If Fis short tailed, then T"F = §,;
- If Fis long tailed, then T"F does not converge at

all: the mass of T"F vanishes at infinity: (T"F)(X)

—> lasn— oo,

THEOREM B. In the same conditions as in THEOREM A,

[x™dF (x)
the sequence (n+ 1) x"dF (x) n has a limit
[x"™MdF(x) 1

lim =
and -, (N+1)x"dF (x) g (o)
Alternative proof: Ivan (Cluj)

COUNTEREXAMPLE C. (PALTANEA). There exist medium sized
distributions for which the limits in Theorems A and B do not exist. Their



hazard rate has no Cesaro limit at infinity, meaning

)j(kF (x )dx

. 0 )
that 1Im does not exist.
X —> o0 X

Ideas of the proof of The. A,B: use properties of TF = F,

Stochastic domination: F<,G< F< G

Hazard rate stochastic domination: F <gg G < Ag < A
IFR (DFR) distributions: A increasing (decreasing)
Monotonous operator: F<, G = TF <TG

HR-monotonous operator: F <y G = TF TG
Continuity properties.
(i). The mapping TF = F, is not continuous in the weak topology.

(i1) The mapping T is monotonously continuous in the sense that
F,TEorF, | F=T(F) = T(F)

(iiii). If T(F) = F then either F = 8, or F = Exponential[%]
W
Monotonicity properties.
(i). The mapping T is not monotonous, but it is HR-monotonous

(i1). The mapping T is IFR and DFR preserving
F € IFR = F, € IFR and F € DFR = F, € DFR

(ili): F e IFR = T(F) <yr Fand F € DFR = F <z T(F)

COROLLARY
(i). If F e IFR then the sequence F, = T"(F) is HR-decreasing and
if F € DFR is HR-increasing.
(ii). If F e IFR. Then T"(F) has a limit, G. If F € DFR then the
sequence of non-increasing right continuous functions (T"(F)), has
a limit, too, G . If G(o0) = 0, then T"(F) weakly converges to G.



CONJECTURE.

)j(xF(x)dx

If lim 2
X— © X

= \* does exist, then T"F — Exp(A*)

We prove it if Af 1s periodic

Theorem 1.

Tj A(x)dx
If A is periodic and has the period T > 0, then F, = Exp(OT— ).

Tj A(Xx)dx
The hazard rates 1. converge uniformly to 2

Corollary 2.

If F has a periodic hazard rate, then the sequence ((nin—f)l)” is convergent
Hn
T

T
[ A(x)dx
0

and its limit is

PLAN OF THE PROOF

Proposition 2.1.
Let A:[0,00) — [0,00) be measurable having the period T > 0.

X
Let A(X) = ({x (Y Y and F(x)=e ¥ Then
X

E(x) = q[T}h(T {TL}) with g =e " and h(t) = e " 2.1

and



x HU{X}) 2.2
E|(X)=qM1—p ! 22

t
— | withn—1 _ H(t) = [ h(x)dx
HT) |Withp=1-qgand (J)

Moreover, the hazard rate of F, is

ph (T{X})
21 (x) = T . (2.3)
H (T)- pH (T{T})

Corollary 2.2. Let (F,), be the sequence given by the recurrence
(1.3). Then

X
F,(x) = Q{T }hn (T {TL}) with q=e *" and h(t) = e ¥ (2.4)
The functions h, : [0,T) — R, have the properties
X
[ha(y)dy (2.5)
0
hn(0)= 1, hy(T) =@, hpey(X)= 1 ~PT——
[ha (y)dy
0

Main result.

Theorem. Let (E,E) measurable space and p finite measure on it.
Let K:EXE — [a,) , a > 0 be a measurable bounded function and

Ko f =Ky f(y)du(y)
Let also B be the mapping defined for bounded measurable functions as

(Bf }x)= (Ku f Ix)

iKHf iy) 3.5)

(3.4)

where y € E is fixed.
Suppose that there exists a bounded measurable function h: E — (0,00), m
>0 and a positive constant ¢ > 0 such that

cK ILlh = h 36



h(x
Then the sequence (B"f), converges to  f (X)Z%y). The limit does

not depend on f.

Proposition 3.4. Let F be a continuous distribution on [0,00) and let

1 (y)dF(y)

p<1,q=1-p=>0. Let B be the mapping Bf(x)= I-py ,
[ £(y)dF(y)
0

defined for measurable bounded positive functions. Then B"(x) converges
to to g~*. As a particular case, if F = U(0,T) is the uniform distribution on

[0,T], then the limit is q7 , with the convention that 0° =1.
Moreover, if q < 1, the convergence is uniform.

Remark and open problem. Is it necessary that the probability F
from Proposition 3.4 be continuous? We think that the operator B"f always
has a limit which depends only on F, not on the chosen f. The limit is not
necessarily the exponential ™. The main problem is to decide if the
operator B defined in Proposition 3.4 has a fixed point h, i.e. if there exists h
such that Bh = h.

ANOTHER APPROACH TO THEOREM 3.3 AND ITS
APPLICATION

The kernel considered in Theorem is a very particular case in the R-theory
for irreducible kernels, theory developed, in Nummelin.

Let h be the C-invariant function for K, and let m, M denote its lower
(upper) bound. Note the following relations, direct consequence of the
assumptions in Theorem 3.3:

K.la(X)2au(AK, 1a(X)  WXeE,AcE

and

K, 1 (%) % h(X)u(A)  VxeE,AcE

4.2



Relation (4.1) implies that K, is p-irreducible, (1.e. u(A) > 0
= K,1a(X) >0 V X € E), aperiodic and the whole space is a small
set. Also relation (4.2) implies that h is a small function.

We summarize below the properties of K, which are relevant
in our context>

Proposition 4.1.

(i) The convergence parameter R of the kernel K, is c.

(i) There exists a c-invariant measure =« satisfying n(E) < oo,
i.c. the kernel is ¢ — positive recurrent.

(iii) The kernel K, is ¢ — uniformly ergodic, i.e.

¢ Ku”f(x)—n(f)<:0 (4.2)

lim sup sup

N—® xcE f{f|<h|N(X)




