On iterated integrated tail

Gheorghiță Zbăganu

 $F = \text{distribution on } [0,\infty)$ $\underline{F}(x) := F((x,\infty)) \rightarrow \text{right tail}$ $\mu = \int_{0}^{\infty} \underline{F}(x) dx$

The integrated tail

$$F_{I}(x) = \frac{\int_{0}^{x} \underline{F}(y) dy}{\int_{0}^{\infty} \underline{F}(y) dy} \Leftrightarrow \underline{F}_{I}(x) = \frac{1}{\mu} \int_{x}^{\infty} \underline{F}(y) dy$$

Compare to

Lorenz curve:
$$L(F)(y) = \frac{1}{\mu} \int_{0}^{y} F^{-1}(t) dt$$

Ignatov's Theorem

As
$$n \to \infty$$
, $L^{n}(F) \Longrightarrow F^{*}$, $dF^{*}/d\lambda(x) = x^{p}$, $p = \frac{1 + \sqrt{5}}{2}$

Ignatov's Conjecture:

Let $T(F) = F_I$. Then $\lim_{n\to\infty} T^n(F) = \text{Exponential}(\lambda_F)$.

False in general.

We prove that it is true in some cases if we agree to add Dirac's measure δ_0 and the null measure δ_{∞} to the family of exponential distributions under the name $\text{Exp}(\infty)$ and Exp(0). **Definitions.**

Hazard rate:
$$\underline{F}(x) = e^{-\int_{0}^{x} \lambda(y) dy} \Leftrightarrow \lambda_{F}(x) = \frac{f_{F}(x)}{\underline{F}(x)}$$

 $m(t) = m_F(t) = \int e^{tx} dF(x) \text{ is the m.g.f. of } F$ $t^*(F) = \sup \{ t \mid m(t) < \infty \}$ $F \text{ is short tailed } \Leftrightarrow t^*(F) = \infty$ $F \text{ is medium } \Leftrightarrow 0 < t^*(F) < \infty$ $F \text{ is long tailed } \Leftrightarrow t^*(F) = 0$ $THEOREM \text{ A. Consider the operator } T : M_{ac} \rightarrow M_{ac} \text{ defined by}$ $TF = F_I \text{. Suppose that the limit } \lambda_F(\infty) \text{ does exist. Then}$ $(i). \ \lambda_F(\infty) = t^*(F);$ $(ii). - If F \text{ is medium tailed, then } T^nF \Rightarrow \text{Exp}(\lambda_F(\infty));$ $- If F \text{ is short tailed, then } T^nF \Rightarrow \delta_0;$ $- If F \text{ is long tailed, then } T^nF \text{ does not converge at}$ $all: \text{ the mass of } T^nF \text{ vanishes at infinity: } (\underline{T^nF})(x)$

 $\rightarrow 1$ as $n \rightarrow \infty$.

THEOREM B. In the same conditions as in THEOREM A, the sequence $\left(\frac{\int x^{n+1} dF(x)}{(n+1)\int x^n dF(x)}\right)_n$ has a limit and $\lim_{n \to \infty} \frac{\int x^{n+1} dF(x)}{(n+1)\int x^n dF(x)} = \frac{1}{\lambda_F(\infty)}$

Alternative proof: Ivan (Cluj)

COUNTEREXAMPLE C. (PĂLTĂNEA). There exist medium sized distributions for which the limits in Theorems A and B do not exist. Their

hazard rate has no Cesaro limit at infinity, meaning

that $\lim_{x \to \infty} \frac{\int_{0}^{x} \lambda_{F}(x) dx}{x}$ does not exist.

Ideas of the proof of The. A,B: use properties of $TF = F_I$

Stochastic domination: $F \prec_{st} G \Leftrightarrow \underline{F} \leq \underline{G}$

Hazard rate stochastic domination: $F \prec_{HR} G \Leftrightarrow \lambda_G \leq \lambda_F$ IFR (DFR) distributions: λ_F increasing (decreasing) Monotonous operator: $F \prec_{st} G \Rightarrow TF \leq TG$ HR-monotonous operator: $F \prec_{HR} G \Rightarrow TF \leq TG$ Continuity properties.

(i). The mapping $TF = F_I$ is not continuous in the weak topology.

(ii) The mapping T is monotonously continuous in the sense that $\underline{F}_n \uparrow \underline{F} \text{ or } \underline{F}_n \downarrow \underline{F} \Rightarrow T(F_n) \Rightarrow T(F)$

(iii). If T(F) = F then either $F = \delta_0$ or $F = \text{Exponential}\left(\frac{1}{\mu(F)}\right)$

Monotonicity properties.

(i). The mapping T is not monotonous, but it is HR-monotonous (ii). The mapping T is IFR and DFR preserving $F \in IFR \Rightarrow F_I \in IFR$ and $F \in DFR \Rightarrow F_I \in DFR$ (iii): $F \in IFR \Rightarrow T(F) \prec_{HR} F$ and $F \in DFR \Rightarrow F \prec_{HR} T(F)$

COROLLARY

(i). If $F \in \text{IFR}$ then the sequence $F_n = T^n(F)$ is HR-decreasing and if $F \in \text{DFR}$ is HR-increasing.

(ii). If $F \in IFR$. Then $T^{n}(F)$ has a limit, G. If $F \in DFR$ then the sequence of non-increasing right continuous functions $(\underline{T^{n}(F)})_{n}$ has a limit, too, \underline{G} . If $\underline{G}(\infty) = 0$, then $T^{n}(F)$ weakly converges to G.

CONJECTURE.

If $\lim_{x \to \infty} \frac{\int_{0}^{x} \lambda_{F}(x) dx}{x} = \lambda^{*}$ does exist, then $T^{n}F \to \operatorname{Exp}(\lambda^{*})$

We prove it if λ_F is periodic

Theorem 1.

If λ is periodic and has the period T > 0, then $F_n \Rightarrow \operatorname{Exp}\left(\frac{\int_{0}^{T} \lambda(x) \, \mathrm{d} x}{T}\right)$. The hazard rates λ_{F_n} converge uniformly to $\frac{\int_{0}^{T} \lambda(x) \, \mathrm{d} x}{T}$

Corollary 2.

If *F* has a periodic hazard rate, then the sequence $\left(\frac{\mu_{n+1}}{(n+1)\mu_n}\right)_n$ is convergent and its limit is $\frac{T}{\int_{0}^{T} \lambda(x) dx}$.

PLAN OF THE PROOF

Proposition 2.1. Let $\lambda:[0,\infty) \to [0,\infty)$ be measurable having the period T > 0. Let $\Lambda(x) = \int_{0}^{x} \lambda(y) dy$ and $\underline{F}(x) = e^{-\Lambda(x)}$. Then $\underline{F}(x) = q^{\left[\frac{x}{T}\right]} h(T\left\{\frac{x}{T}\right\})$ with $q = e^{-\Lambda(T)}$ and $h(t) = e^{-\Lambda(t)}$ (2.1) and

$$\underline{F}_{I}(x) = q^{\left[\frac{x}{T}\right]} \left(1 - p \frac{H(T\left\{\frac{x}{T}\right\})}{H(T)} \right) \text{ with } p = 1 - q \text{ and } H(t) = \int_{0}^{t} h(x) dx$$

$$(2.2)$$

Moreover, the hazard rate of F_I is

$$\lambda_{I}(x) = \frac{ph\left(T\left\{\frac{x}{T}\right\}\right)}{H\left(T\right) - pH\left(T\left\{\frac{x}{T}\right\}\right)}$$
(2.3)

Corollary 2.2. Let $(F_n)_n$ be the sequence given by the recurrence (1.3). Then

$$\underline{F_n}(x) = q^{\left\lfloor \frac{x}{T} \right\rfloor} h_n(T\left\{\frac{x}{T}\right\}) \text{ with } q = e^{-\Lambda(T)} \text{ and } h(t) = e^{-\Lambda(t)}$$
(2.4)

The functions $h_n : [0,T) \rightarrow \mathfrak{R}_+$ *have the properties*

$$h_n(0) = 1, \ h_n(T) = q, \ h_{n+1}(x) = 1 - p \frac{\int_0^{\infty} h_n(y) dy}{\int_0^{\infty} h_n(y) dy}$$
(2.5)

Main result.

Theorem. Let (E, \mathbf{E}) measurable space and μ finite measure on it. Let $K: E \times E \rightarrow [a, \infty)$, a > 0 be a measurable bounded function and $K_{\mu} f = \int K(x, y) f(y) d\mu(y)$

Let also B be the mapping defined for bounded measurable functions as

$$(Bf)(x) = \frac{(K_{\mu}f)(x)}{(K_{\mu}f)(y)}$$
(3.5)

(3.4)

where $y \in E$ is fixed.

Suppose that there exists a bounded measurable function $h: E \to (0,\infty)$, m > 0 and a positive constant c > 0 such that

$$cK_{\mu}h = h \tag{3.6}$$

Then the sequence $(B^n f)_n$ converges to $f_{\infty}(x) = \frac{h(x)}{h(y)}$. The limit does not depend on f.

Proposition 3.4. Let *F* be a continuous distribution on $[0,\infty)$ and let $p \le 1, q = 1 - p \ge 0$. Let *B* be the mapping $Bf(x) = 1 - p \frac{\int_{0}^{x} f(y) dF(y)}{\int_{0}^{\infty} f(y) dF(y)}$,

defined for measurable bounded positive functions. Then $B^n f(x)$ converges to to $q^{F(x)}$. As a particular case, if F = U(0,T) is the uniform distribution on [0,T], then the limit is $q^{\frac{x}{T}}$, with the convention that $0^0 = 1$. Moreover, if q < 1, the convergence is uniform.

Remark and open problem. Is it necessary that the probability F from Proposition 3.4 be continuous? We think that the operator $B^n f$ always has a limit which depends only on F, not on the chosen f. The limit is not necessarily the exponential $q^{F(x)}$. The main problem is to decide if the operator B defined in Proposition 3.4 has a fixed point h, i.e. if there exists h such that Bh = h.

ANOTHER APPROACH TO THEOREM 3.3 AND ITS APPLICATION

The kernel considered in Theorem is a very particular case in the R-theory for irreducible kernels, theory developed, in Nummelin.

Let *h* be the *C*-invariant function for K_{μ} and let *m*, *M* denote its lower (upper) bound. Note the following relations, direct consequence of the assumptions in Theorem 3.3:

$$K_{\mu} \mathbf{1}_{A}(x) \ge a \mu(A) K_{\mu} \mathbf{1}_{A}(x) \qquad \forall x \in E, A \in \mathbf{E}$$
^{4.1}

and

.

$$K_{\mu} 1_A(x) \ge \frac{a}{M} h(x) \mu(A) \qquad \forall x \in E, A \in \mathbf{E}$$

4.2

Relation (4.1) implies that K_{μ} is μ -irreducible, (i.e. $\mu(A) > 0$ $\Rightarrow K_{\mu}1_A(x) > 0 \quad \forall x \in E$), aperiodic and the whole space is a *small set*. Also relation (4.2) implies that *h* is a *small function*.

We summarize below the properties of K_{μ} which are relevant in our context>

Proposition 4.1.

- (i) The convergence parameter R of the kernel K_{μ} is c.
- (ii) There exists a c-invariant measure π satisfying $\pi(E) < \infty$, i.e. the kernel is c – positive recurrent.
- (iii) The kernel K_{μ} is c uniformly ergodic, i.e.

$$\lim_{n \to \infty} \sup_{x \in E} \sup_{f: |f| \le h} \left| \frac{c^n}{h(x)} K_{\mu}^n f(x) - \pi(f) \right| = 0$$
(4.2)